Biomedical Research in Canada

- 1. A healthy and vibrant agenda is <u>essential</u> for improving the health of Canadians and developing a knowledge based economy.
- 2. Compared to all other OECD countries, Canada's investment in biomedical research is <u>substantially lower</u>.
- 3. All types of biomedical research are necessary and having a balanced portfolio of research funding is essential:
 - -To discover better prevention and treatment strategies
 - -To test them in people
 - -To adapt discoveries to the Canadian Health System
- 4. Need a <u>national funding and organizational strategy</u> that is:
 - -broad and world class
 - -responsive to needs of Canadians (and peoples of the world)
 - -develops Canadian expertise to improve health
 - -brings in Partners

Perspectives

- Discovery and invention are <u>not</u> the same as innovation and improving health
- Only 5% of discoveries in the laboratory translate into improved human health
- So investments <u>across the entire spectrum</u> of research endeavours and disciplines are critical to move ideas across from <u>discovery to human health impact</u>
- This is a long process which can take a decade or two

Three Types of Discoveries That Have Dramatically Improved Human Health

1. Penicillin

-Petrie dish (Fleming) \rightarrow animal work \rightarrow limited scale synthesis \rightarrow human impact (Florey and Chain)

2. <u>BP and Strokes</u>

-Documentation that elevated BP caused strokes & heart attacks

-Development of drugs to lower BP

-Large randomized clinical trials show reduction of strokes, heart attacks and deaths with BP lowering

3. <u>Tobacco is the No. 1 killer of adults</u> (heart disease, strokes, cancers, lung disease): 100 million deaths in the 20th century;

1 billion deaths in the 21st century

-Discovery about its harms is *entirely based on population studies* CLINICAL & POPULATION SCIENCES BOTH FUNDAMENTAL & ESSENTIAL

Canada's Funding for Health Research is Low Compared to Other Rich Countries

(Funding in 2012 : USD in billions)

	Overall	Public	Industry
USA	119.3	49	70
W. Europe	81.8	28	54
Japan	37.2	9	28
Australia	6.1	4.7	1.4
S. Korea	6.0	1.1	4.9
Canada	5.3	3.3	2.0

Chakma et al, N Engl J Med

Federal Funding for Health Research

Yusuf & Cairns, CMAJ 2012

Canadian Research Funding is <u>Declining</u> in Comparison with Other Countries (2007-2012)

Chakma N Engl J Med

Canada's Funding for Research is <u>Low</u> & continues to <u>decline</u> vs Other Countries After Adjusting for GDP (2012 to 2017)

	GERD % GDP 2012	GERD % GDP 2016/2017
USA	2.7 % (2012)	2.7 % (2016)
OECD	2.3 % (2012)	2.3 % (2016)
Japan	3.2 % (2012)	3.1 % (2016)
Australia	2.9 % (2012)	3.1 % (2016)
S. Korea	4.0 % (2012)	4.2 % (2016)
Canada	1.8 % (2012)	1.5 % (2017)

GERD= Gross domestic spending in R&D. Adjusted for PPP (2010 US dollars)

Distribution of Federal Research Funds by Themes: Relative underfunding of clinical and population research

Yusuf & Cairns, CMAJ 2012 8

Funding for Basic Biomedical & All Other Forms of Research

	Basic	All other Forms
NIH	55%	45%
UK	50%	50%
Canada	65%	35%

Percent of Federal Budget for Clinical Trials

NIH (USA)	11%
UK-NIHR	20%-25%
CIHR	3.3%

Yusuf & Cairns, CMAJ 2012

10

What is Needed?

- 1. A "new" body or a "new part" of CIHR for research other than basic biomedical with protected budgets
- 2. Target funding for each part to reach 1.5 billion dollars per year (total of 3.0 billion) in 5 years with appropriate long term growth
- 3. A bold & transformative national 25 year strategy to make Canadian research among the top 3 in the world, develop a sustainable science-based work force that will attract the best minds into science, improve health and galvanize our economy

So What Needs to be Done in Canada?

- 1. Increase public spending substantially for <u>all</u> forms of research, particularly for clinical and population research.
- Strive for a balanced portfolio with about <u>equal</u> support for basic Biomedical vs Other (Clinical, Population, Health Systems, Policy & Implementation).
- 3. Use public funding to leverage industry funding (1:1 or 1:2)
- 4. Need a transformed funding body, e.g. the UK model (2011)
 -MRC basic biomedical : 1 billion pounds
 -NIH-R clinical, population, etc : 1 billion pounds
- 5. Create national centres of excellence in various themes across the country

12